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We investigate random searches on isotropic and topologically regular square and triangular lattices with
periodic boundary conditions and study the efficiency of search strategies based on a power-law distribution

P(€)~{~* of step lengths €. We consider both destructive searches, in which a target can be visited only once,
and nondestructive searches, when a target site is always available for future visits. We discuss (i) the depen-
dence of the search efficiency on the choice of the lattice topology, (ii) the relevance of the periodic boundary
conditions, (iii) the behavior of the optimal power-law exponent Hopt as a function of target site density, (iv) the
differences between destructive and nondestructive environments, and finally (v) how the results for the

discrete searches differ from the continuous cases previously studied.
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I. INTRODUCTION

The problem of finding randomly located target sites has
applications in a large number of phenomena [1], such as
biological searches for food or mates [2-10], which involves
performing random walks in search spaces of dimension
d=73. Another potential area of application pertains to infor-
mation theory [11] and regards the access to registers in
high-performance databases. Furthermore, the problem of
optimal well placement for oil recovery from older oil fields
in geology can be approached in a similar manner [12].

Previous studies have focused on random searches in con-
tinuous Euclidean spaces [13-16]. However, in many poten-
tial technological applications, like in the Internet, discrete or
digital rather than continuous search spaces may have greater
relevance. For instance, this is the case for the question of
memory search in neural networks [17]. Moreover, the expo-
nentially increasing availability of information on integrated
networked systems has rendered sequential searches over the
entire information space covering all indexed devices im-
practical, if not impossible. Such difficulties have thus
sparked interest in random search methods. Here, we turn
our attention to random searches in lattice environments.

Experiments and numerical simulations [1,8-10,13,15,16]
support the hypothesis that in the continuous case, processes
defined by an asymptotic Lévy density distribution
P(€;)~€;*, where P denotes the distribution of step lengths
€}, lead to optimal random searches for particular values of
1 <u<3. The question is, then, how does the lattice topol-
ogy affect the efficiency of an arbitrary (random or system-
atic) search? Consider the illustrative example of Internet
search engines. The gathering of information typically is
done by devices known as ‘“crawlers.” Recent results
[18-21] suggest that the topological characteristics of a lat-
tice affect the performance of the information search en-
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gines. In fact, a lot of effort has been put forward to deter-
mine which lattice structure would optimize the search, like
in small-world dynamics [22] or in power-law network [21]
contexts.

On the other hand, it is of practical relevance to under-
stand what kind of random walks maximizes the search effi-
ciency in a lattice of a given arbitrary topology. As a first
step to tackle this general problem, we consider in this work
regular lattices, more specifically square and triangular ones.
By varying the value of the parameter u of the asymptotic
Lévy distribution, we study different types of search strate-
gies on these lattice networks, comparing the results with the
known optimal search strategies for continuous search
spaces.

The paper is organized as follows. In Sec. II we define the
problem and present the searching procedure. In Sec. III we
report the numerical simulations. We discuss relevant aspects
of the results in Sec. IV. Finally, in Sec. V we present our
concluding remarks.

II. MODEL

We analyze the optimal strategies for a searcher that looks
for randomly distributed target sites along regular, isotropic,
and periodic square and triangular lattices, characterized by
two quantities: the lattice parameter s (set equal to 1 in all
the numerical simulations) and the coordination number k.
The latter is the number of bonds leaving each node or,
equivalently, the number of different directions that the
search can follow from a given node. We have that k=4 (6)
for the square (triangular) lattice.

We define a linear size L=(N~-1)s, with N denoting the
number of nodes along the y direction. So the examples we
discuss have a total area of LX L (square) and V3L'/2X L
(triangular); see Fig. 1. Also, in the latter we distinguish two
situations: the triangular (L'=N/s) and the nonergodic trian-
gular (NE) (L'=L) lattices. Due to the relative number of
nodes in the x and y directions, together with the periodic
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FIG. 1. Examples of the two types of lattices considered in this
work. The dots at the nodes represent the randomly distributed tar-
get sites.

boundary conditions (BC’s), for the first (second) case it is
easy to show that if the forager leaves a given node along a
certain direction not parallel to the x or y axis, always fol-
lowing straightforwarded towards it, then the forager will
reach again this same node only after crossing all (at most
two) lines of bonds parallel to the original direction.
Finally, we assume the targets are sparsely and homoge-
neously distributed along the nodes of the lattice. We con-
sider two different types of search process: the destructive
case, in which a previously visited target site becomes un-
available for subsequent visits, and the nondestructives case,
when a visited site remains always available for future visits.

A. Lattice search dynamics

The ignorance about the exact locations of the target sites
demands some type of probabilistic or statistical approach.
On the other hand, the search process itself requires specific
rules of locomotion, and hence an algorithmic dynamical
procedure. Thus, at each step j of the search we consider the
following rules:

(i) If there is a target site located within a “vision radius”
distance r,, reachable by moving along a straight line of
bonds (i.e., no zigzag paths are allowed), then the forager
detects it and moves to the site position.

(ii) If there are no target sites within a distance r,, then the
forager chooses one of the k possible directions at random
and a distance €; (in units of s) from a probability distribu-
tion P(€;). It then incrementally moves to the new point,
constantly looking for a target site within the distance r,
along its way (see Fig. 2). If it does detect a target site, it
proceeds to the target site as in step (i). Otherwise, it stops
after traversing the distance €; and chooses a new direction
and a new distance €,,.

(iii) In destructive searches a detected target site is imme-
diately removed from simulation, becoming undetectable,
and a new site is created at a random location [23]. In non-
destructive searches a detected target site is immediately re-
generated after the forager leaves its site.

The constraint against zigzags in rule (i) has no effect on
the large-scale, only on the small-scale dynamics. Thus, we
can impose such restriction and benefit from the reduction of
the computational load. Also, notice that zigzags are forbid-
den within a single step ¢;. Variation of the parameter u of
the distribution P(€;) (see below) only has relevance if zig-
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FIG. 2. Schematic representation of the searching dynamics.
The gray regions indicate the area scanned by the forager during the
flights. In this case r,=s.

zags are absent within a flight. Nevertheless, this type of
motion can arise via a probabilistic sequence of short flights
(see Fig. 3).

Regular lattices have a metric which is similar to the con-
tinuous spaces: the farther a target site, the larger is the trav-
eled distance to reach it. This is not true, for instance, for
nonscaled small-world lattices, in which a single bond may
connect two extremely distant nodes. Recent findings for
continuous searches show in different situations [ 13—16] that
random searches are more efficient if we assume power-law
tails for the flight lengths (see Fig. 3)

P(€) ~ €%, ;> 4, (1)
leading to asymptotic Lévy walks, whose step lengths ¢;
have no characteristic scale; i.e., the distribution has self-
affine properties: P(AN{)~X""P({), 1<u<3. Gaussian
(Brownian) behavior is a special case for x> 3. In the above
expression, € is a typical lower cutoff distance, which in our
case is set equal to r,.

The reasons why such walks lead to the best efficiency are
discussed in detail in Refs. [1,13,16]. Basically, they are re-
lated to the larger diffusion and smaller returning probability
of Lévy processes, compared to the Brownian case. In spite
of the fact that those conclusions are reached for Euclidean
spaces in one, two, and three dimensions, we argue that the
same reasoning can also be extended to regular lattices due
to the already mentioned metric similarities. Thus, in our

p=2.5

p=2.0

p=1.5

P

FIG. 3. Examples of Lévy flights on the two-dimensional plane
for different values of w.
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analysis we assume Eq. (1) as our distribution P({;) of step
lengths, which are given by multiples of the net parameter s,
such that €;=ns, where n is a positive integer. Finally, it is
worth mentioning that in the continuous case it has been
shown [10] that some sort of zigzag behavior within a single
Lévy flight does not alter the qualitative results from a pure
Lévy walk. This is also true when short-range correlations
are introduced [24].

B. Search efficiency

As discussed above, we have a family of distributions
characterized by u, corresponding to different search strate-
gies. So a key point in the problem of random searches on
regular lattices is to determine, for a given set of the system
parameters, what is the optimal value for u that maximizes
the gain involved in finding search sites in the smaller total
path (or time). To address this question we analyze the search
efficiency 7(u), defined as the ratio of the number of visited
target sites to the average total distance traversed [13] (aver-
age over M runs) or

1< N,
n(p) = ﬁmE:l L (2)

Here, L, is total distance traveled in the mth run to find N,,
targets sites. In the simulations we take all the N,, to have the
same fixed value N.

III. RESULTS

We discuss three types of lattices—square, triangular, and
triangular-NE—and also two kinds of target sites—
nondestructive and destructive. We also study how the effi-
ciency varies with target site density. For the sake of com-
parison, in this section we use the same parameters values in
all cases. We assume the lattice parameter s=1; the number
of nodes, N'=10% the fixed number of target sites to be
found per simulation, N=500; and a total of simulation runs
for each lattice, M=10°. We consider a number of target
sites, N,, of 103, 10%, and 2 X 10° per lattice, corresponding to
low, medium, and high densities, respectively. Also, we take
r,=5 for the low- and medium-target-density cases, but
r,=50 for the high-density case, to further enhance the prob-
ability of finding targets.

It is useful to define the quantity A= N(N+x)/(N2r,/s),
which roughly represents the mean distance (in units of s)
between two target sites. Here, xy=0 for square and
triangular-NE lattices and y=1 for triangular lattices. The
scaled efficiencies A7(u) as a function of w are shown in
Figs. 4—6. We should notice that, for the scaled efficiency,
the high density can lead to lower values than those for the
other two cases. This fact is just an artifact of this type of
normalization. In Figs. 4 and 5 we have, respectively, the
square and triangular lattices considering the different densi-
ties. The simulations for the triangular-NE lattices give es-
sentially the same 7 as the triangular lattices for medium and
high densities (so they are not displayed here). However, the
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FIG. 4. The scaled efficiency An(u) vs u for square lattices.
The circle, triangle, and diamond represent, respectively, low, inter-
mediate, and high densities.

results are different for low densities. In Fig. 6 we compare
the efficiencies of our three type of lattices at this regime.

IV. DISCUSSION

In the remainder of this work we interpret the previous
results and analyze the influence of the different features
of our regular lattices to the search efficiency. We also dis-
cuss a number of issues, including the roles of target sites
density, destructive and nondestructive targets, and lattice
connectivity.
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FIG. 5. The scaled efficiency A 7(w) vs u for triangular lattices.
The circle, triangle, and diamond represent, respectively, low, inter-
mediate, and high densities.
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FIG. 6. The scaled efficiency N7(u) vs u of the square (solid
lines), triangular-NE (dashed lines), and triangular (dotted lines)
lattices in the case of low density.

A. Target site density
1. Low density

This situation is shown as circles in Figs. 4 and 5 and
summarized in Fig. 6. We note that 7(u) —0 when u— 1.
Furthermore, we find that u.,=~2 is the optimal exponent
and 7 starts to diminish for larger values of w. For low
densities, we indeed expect the continuous limit and the re-
lation between u,y, and X [13] to remain valid. To understand
the global behavior we observe that the periodic BC’s ap-
plied to regular lattices can generate in some cases a looplike
trajectory for a single search step when the chosen €; is very
large (recall that the flights larger than the system size are not
truncated). If there are no target sites within r, along the
vicinity of such periodic orbit, then the searcher remains
trapped in a loop until flight €; is fully traversed (for large
densities the loops are unlikely to happen). This thereby re-
duces the search efficiency. One always can observe loops
when the following three conditions are met: (i) low density
of target sites, (ii) search strategy in long steps regime
(u<2), and (iii) periodic BC’s.

On the opposite limit of w=3 (Brownian foraging), we
have many small steps diffusing around the initial position.
This phenomenon increases the total covered distance, there-
fore also diminishing efficiency. The maximum efficiency
is a compromise between these two extremes, leading to
Mopt = 2, which is the same optimum value of the Euclidean
continuous nondestructive search for low density [13,15].

2. Intermediate density

The numerical simulations for this case are represented by
triangles in Figs. 4 and 5. Again we find that within the
interval 1 <u <3 there is an optimum value for the exponent
. This time, however, the values are always smaller than 2.
The reason is that the intermediate densities of target sites
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FIG. 7. The mean step € as function of A/ r, in a log-log plot for
the nondestructive case. For all the three lattices we take u=1.1,
r,=5, and N'=10* nodes in the y direction. The variation of \ is due
to the variation of the number of target sites on the lattice. The
dashed lines represent the analytical €(\) expression discussed in
the text.

are sufficiently large to truncate long steps ;>\, so dis-
tances greater than the characteristic lattices dimensions L
are not traveled, suggesting that the searcher makes Lévy
random walks truncated in N. Since there is less need to
return to previous sites, therefore lower values of u get fa-
vored.

An important question which arises then is what is the
critical value for A—i.e., how small N\ must be in order to
truncate the search steps and so avoid looplike trajectories.
We numerically investigate this point by fixing a small value
for w and then plotting on a log-log scale the average length

for one step ¢ divided by r, as a function of \/r,. In such a
graph we would expect a linear relation between these two
quantities while truncation takes place. On the other hand,

when truncation ceases, then € should present a rapid growth
with respect to \. Figure 7 corroborates these predictions,
where we clearly identify the two regimes and the critical
value for N/r,.

We obtain an analytical expression relating € and \ in the

truncated regime from a very straightforward reasoning. For
the linear part of the curves in Fig. 7, we can write

EzA(A>B. (3)

Now, we “borrow” a result valid for the Euclidean continu-
ous case. There, the average length step in the truncated
Lévy flights is given by [13,25]
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For the situation we are discussing here, the first term on the
right-hand side of the above equation is always dominant
(supposing u not too close to 2), so we can approximate
Ey=r,(2=w)'(\/r,)>*. By directly comparing this last
expression with Eq. (3), we find A=r,/B and B=2-u. Using
these parameters values, we reproduce the linear behavior in
Fig. 7 quite well (dashed lines). So if the target density rises
above a critical value, which for the examples shown in Fig.
7 is N/ r, =300, then the mean step can be approximated by
the first moment of Lévy distribution truncated at \.

3. High density

In the high-density limit, which basically corresponds to
N =r,, a target site is quite often within the radius of vision.
Hence, essentially all large steps are truncated and for each
step one target site is almost always found irrespectively of
lattice topology (triangular or square) and target properties
(destructive or nondestructive). Therefore the efficiency has
no dependence over u, as seen from Figs. 4 and 5 (dia-
monds).

B. Destructive and nondestructive searches

Comparing the graphs shown in Figs. 4 and 5, we can see
that the nondestructive are about 50% more efficient than the
destructive searches. This difference arises because when the
searcher leaves the nth found target site, but still remains
near it, the searcher may probabilistically choose a possible
step which will bring it back to such a site. In the destructive
case, this will just increase the total distance traveled, with-
out any gain in terms of number of found target sites.

This feature can be quantified by calculating the actual
distance d,, traveled between the two successively found tar-
get sites n—1 and n, for n=1,...,N. In Fig. 8 we show the
distribution of such distances for u=1.1. We see that the
distribution of d, is concentrated around an average value,
which is indeed larger for the destructive than for the non-
destructive case. An interesting point to observe for the non-
destructive case concerns the total number of sites that have
a single compared to those that have multiple visitations at
the optimal condition. The two values become approximately
equal near pqp.

C. Lattice connectivity and boundary conditions

We first comment on our choice of BC’s. We could have
used not periodic but rather helical, absorbing, reflecting,
etc., BC’s. We avoided using absorbing BC’s because they
do not correspond to realistic random search phenomena.
Reflecting BC’s might find applications in the continuous
case, but for networks and lattices periodic and helical BC’s
seem more plausible. Furthermore, reflecting BC’s also have
the drawback of taking the searcher back into recently visited
sites. Thus, between helical and periodic BC’s we have cho-
sen the latter because they seem more representative for a
general network system. Nevertheless, we have also run
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FIG. 8. Normalized distributions of the traveled distances be-
tween two successive found target for (+) square, (*) triangular-
NE, and (X) triangular lattices. The parameters values are as in Fig.
6 for low density and u=1.1.

some simulations with helical BC’s (not shown). Basically,
they presented similar results, but we found that ultralong
flights do not occur and so the optimal exponents values are
closer to those of the continuous case (although not equal).
The only major differences between the triangular and
square lattices are the coordination number k linking the sites
and the effect of the periodic BC’s. Regarding the BC’s, as
already pointed out, in the triangular case this type of peri-
odicity does not give rise to loops; i.e., in a single very long
step €;> L the searcher eventually could cover all the lattice
nodes. On the other hand, for the triangular-NE and square
cases, this is not possible. The lattice geometry is such that
the searcher can be trapped in a loop during a single long
step. Comparing results for triangular and square lattices, we
find that in the former the distances covered between two
successive sites are always smaller when the target sites are
sparsely distributed—e.g., 4 times smaller for u=1.1 (see
Fig. 8). So the triangular lattices lead to higher efficiencies
than square ones for u— 1. Notice that the triangular lattice
has the highest efficiency. Similarly, we can expect that any
BC’s making the square lattice “more ergodic” (like the pre-
vious mentioned helical BC’s) would increase its efficiency.
Although intuitively one expects that a triangular lattice per-
mits visitation of a greater number of target sites because of
the larger number of connections, this feature is not relevant
at a low-density regime. To exemplify this point, in Figs. 9(a)
and 9(c) we show schematically a typical situation for trian-
gular and square lattices at low density. Due to the small
number of target sites, for €;=5s and r,=3s the extra pos-
sible directions of movement for the triangular lattice are not
an advantage since only along a particular direction (repre-
sented by an arrow) will the searcher be able to scan the
target. The other paths will not lead to such target site. In
such a regime, however, the periodic BC’s play a fundamen-
tal role. Note that low density requires small values for w. It
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FIG. 9. Schematic representation of low- (a)—(c) and high- (b)-
(d) density scenarios. For €;=5s and r,=3s, the arrows represent
the only steps which would lead to a target site.

represents ballistic behavior where loops occur frequently for
squares and triangular-NE, hence diminishing their effi-
ciency when compared to triangular lattices.

To test this hypothesis we consider a simulation of only
one target site to be found N times by the searcher. We can
then compute the return probability, which scales inversely
to the distance € covered before revisitation, so that we
define P=1/4€. To compare the performance in both types of
lattices we numerically evaluate P,/ P, in Fig. 10. We verify
that the return probability is higher for triangular lattices.
The loops for the square and triangular-NE lattices, espe-
cially for small values of u, make the €5 for such cases to
become longer.

1.7 | (a) triangular-NE and square

15 1

P,/ Py,

24 ' I ' I ' I
(b) triangular and square

18

P,/ Py,
o

0 L
1 15 2 25 3

i}

FIG. 10. The ratio between the returning probabilities for non-
destructive triangular and square lattices as function of w. Here we
have r,=16 and N'=1000.
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In the opposite limit of high density, the triangular lattice
has a little larger efficiency than that for the square one, a
fact more pronounced in the nondestructive case (compare,
for instance, Figs. 4 and 5). Observe that for high density
loops practically do not occur. So it is the connectivity k
which explains the larger mean and larger variance of the
search efficiency for triangular lattices. Consider the sche-
matic representation for such situation in Figs. 9(b) and 9(d).
In the example, for the square lattice two out of four direc-
tions can lead to a given target, whereas for the triangular
lattice four out of six directions can lead to a same target site.
The higher variance arises due to the larger variation be-
tween the four path lengths, in comparison to the square
lattice.

Finally, for intermediate densities we see from Figs. 4 and
5 that there are no important differences between the trian-
gular and square lattices considering the whole range of wu.
This can be understood by first observing that in this case the
density is high enough to avoid loops. Indeed, for the param-
eters used we have N\/r,=200, therefore below the critical
value of 300 (see Fig. 7), above which loops start to take
place. And second, the density is still low enough to prevent
the effect of the connectivity to become relevant.

Last, we summarize the differences between continuous
and lattice searches efficiencies. They are mainly due to the
action of the periodic BC’s. If we use truncated Lévy flights
with a cutoff equal to the lattice size, then we expect behav-
ior closer to the continuous case. Note that in continuous
searches, looping is usually forbidden. So we have the fol-
lowing: (i) in lattices 7(w)— 0 when u— 1 in sparsely dis-
tributed target sites, a consequence of the loops; (ii) triangu-
lar lattices appear less affected by BC’s in this manner, yet
the w— 1 limit still leads to small efficiencies; (iii) no quali-
tative differences appear in the low-density regime between
destructive and nondestructive searches in lattices, contrarily
to what happens for searching in the continuous; and (iv)
optimal strategies from the continuous space nondestructive
case remain optimal also in lattice searches, even though for
the destructive case a different optimal u value arises.

D. Intermittent searches

Finally, we make a brief parallel between the present ap-
proach and the one recently proposed [26] to deal with hid-
den targets. It is a search strategy based on a “saltatory”
(intermittent) behavior. The basic idea is that for difficult to
find targets, the scanning mechanism should be a specialized
process. So the random search would consist of two different
procedures: a moving-only phase, when the searcher moves
fast, changing from one location to another, and a second
scanning only phase, during which the searcher explores its
immediate vicinity, looking for the targets. Our model con-
siders that during the moving process it is possible simulta-
neously to search for the target sites within a certain detec-
tion radius r,. This is so in many concrete situations for the
continuous case (see Refs. [1,2,13,14]) as well as for lattices
when the targets are easy to identify—e.g., public websites
on the Internet or register addresses in electronic databases.
Of course, however, the method in Ref. [26] may be more
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appropriate in networks where the sites are somehow hidden.
Thus, a future investigation along this line would be in order.

V. CONCLUSION

In summary, we have studied random searches on regular
lattices and found that, as in continuous space searches, the
optimal strategy depends on the target site density. For low
density we have observed u,, =2 as the optimal exponent.
Increasing the density to intermediate values, we have found
that u going towards 1 becomes the more efficient strategy
because long steps become truncated and the searcher effec-
tively performs rectilinear ballistic motion between target
sites. For high density all the strategies lead basically to the
same result, so the exact value of u no longer matters. We
have also discussed the relevance of the coordination number
k for the efficiency and its variance in the limit of high den-
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sities. We have revealed that periodic BC’s lead to a number
of interesting phenomena, such as higher than expected re-
turn probabilities in the triangular lattice, loops for low target
density, etc. Those features lead to an unexpected similarity
between the destructive and nondestructive efficiencies.

A natural continuation of this work should be the study of
the effects of more general BC’s—e.g., twisted node
matches, as well as disordered lattices, e.g., due to broken
links. Those are points which will be addressed in a future
contribution.
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